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Using an active grid devised by Makita (1991), shearless decaying turbulence is 
studied for the Taylor-microscale Reynolds number, Ri ,  varying from 50 to 473 in 
a small (40 x 40 cm2 cross-section) wind tunnel. The turbulence generator consists 
of grid bars with triangular wings that rotate and flap in a random way. The value 
of Rj, is determined by the mean speed of the air (varied from 3 to 14 m s-’) as 
it passes the rotating grid, and to a lesser extent by the randomness and rotation 
rate of the grid bars. Our main findings are as follows. A weak, not particularly 
well-defined scaling range (i.e. a power-law dependence of both the longitudinal (u )  
and transverse (v)  spectra, Fll(kl)  and F 2 2 ( k l )  respectively, on wavenumber k l )  first 
appears at R, - 50, with a slope, n1, (for the u spectrum) of approximately 1.3. As 
Ri was increased, n1 increased rapidly until Ri. - 200 where n - 1.5. From there 
on the increase in n1 was slow, and even by Rl = 473 it was still significantly below 
the Kolmogorov value of 1.67. Over the entire range, 50 < Ri < 473, the data 
were well described by the empirical fit: n1 = i(1 - 3.15RT2’3). Using a modified 
form of the Kolmogorov similarity law: F1 1 ( k l )  = C1,~2/3k,5’3(kly)5/3-nl where E 

is the turbulence energy dissipation rate and y is the Kolmogorov microscale, we 
determined a linear dependence between nl and C,,: C1, = 4.5 - 2.4nl. Thus for 
n1 = 5/3 (which extrapolation of our results suggests will occur in this flow for 
Ri. - 104),C1. = 0.5, the accepted high-Reynolds-number value of the Kolmogorov 
constant. Analysis of the p.d.f. of velocity differences Au(r) and Au(r)  where r is an 
inertial subrange interval, conditional dissipation, and other statistics showed that 
there was a qualitative difference between the turbulence for R, < 100 (which we call 
weak turbulence) and that for R, > 200 (strong turbulence). For the latter, the p.d.f.s 
of Au(r)  and Av(r) had super Gaussian tails and the dissipation (both of the u and 
u components) conditioned on Au(r)  and Au(r)  was a strong function of the velocity 
difference. For Ri. < 100, p.d.f.s of Au(r) and Au(r) were Gaussian and conditional 
dissipation statistics were weak. Our results for R;. > 200 are consistent with the 
predictions of the Kolmogorov refined similarity hypothesis (and make a distinction 
between the dynamical and kinematical contributions to the conditional statistics). 
They have much in common with similar statistics done in shear flows at much higher 
R)., with which they are compared. 

1. Introduction 
We address here, from an experimental viewpoint, the way in which the character- 

istics of turbulence, particularly its spectrum and probability density function, evolve 
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as the Reynolds number is varied from low to high values. The flow is shearless 
grid turbulence and due to the novel active grid design of Makita (1991), a Taylor 
microscale Reynolds number (Rl = uI/v, where u is the longitudinal r.m.s. velocity, 
I is the Taylor microscale and v is the kinematic viscosity) of nearly 500 is achieved. 
In particular, our aim is to determine at what R:, high-Reynolds-number turbulence 
(in the Kolmogorov sense) first occurs in such a flow. 

The central postulate of the Kolmogorov (1941a, b) phenomenological theory of 
turbulence is that if the Reynolds number is sufficiently high, there is a range of 
scales that are locally isotropic. Here there exists a scaling region, known as the 
inertial subrange, that separates the low-wavenumber region (large scales) which are 
affected by initial and boundary conditions and are therefore not universal, from the 
very high-wavenumber region of the spectrum, in which viscous dissipation occurs 
(Batchelor 1953; Monin & Yaglom 1975; Lesieur 1990). Within the inertial subrange, 
the Kolmogorov (1941, referred to herein as K41) theory predicts that the second- 
order structure function should vary as r2l3, where r is the separation distance between 
two points. By means of a Fourier transformation, this result may be more familiarly 
expressed in terms of the one-dimensional spectra in the form 

Fll(kl) = C 1 ~ ~ / ~ k , ~ ’ ~ ,  

(2) 2/3k-5/3 F22(kl) = F33(kl) = C2E 1 . 
Here Fll(kl), F22(kl) and F33(kl) are respectively the streamwise power spectra of the 
longitudinal velocity fluctuations, u, and the transverse velocity fluctuations, u and w, 
k l  is the longitudinal wavenumber, E is the turbulence energy dissipation rate per unit 
mass (defined below) and C1 and C2 are the Kolmogorov constants (Monin & Yaglom 
1975). Since the Kolmogorov theory assumes local isotropy, it can be deduced from 
(1) and (2) on purely kinematical grounds that C2/C1 = 4/3. 

For equations (1)  and (2) to hold, the Reynolds number must be high. Yet it is 
well known that three-dimensional turbulence, exhibiting a multiplicity of scales, can 
exist at Reynolds numbers that are too low to have the -5/3 scaling region. Thus 
traditional grid-generated turbulence (e.g. Comte-Bellot & Corrsin 1971) with an RA 
of around 50 does not have a scaling region, but is sufficiently well developed so that 
the dissipation rate can be estimated by the scaling law 

E = A ( u ~ ) ~ / ~ / G .  (3) 
Here, G is the turbulence integral scale (defined below), A is a constant close to 
unity and the angle brackets denote averaging. This law implies a cascade since the 
dissipation (a small-scale phenomenon) is determined from the large-scale energetics, 
and the viscosity does not appear explicitly. It has been shown that even in low- 
Reynolds-number grid turbulence (see for example Sirivat & Warhaft 1983, figure 5) 
E determined from (3) is close to the model-independent estimate (assuming only 
isotropy at the dissipation scales) given by 

E = 15v((du/d~)~)  (4) 
where du/dx is the streamwise derivative of the longitudinal velocity fluctuations. 
Does such low-Reynolds-number turbulence differ qualitatively from that at high- 
Reynolds-number ? And if so, what are discernible differences? Finally, at what 
R:, does the low-Reynolds-number turbulence, without a scaling region, undergo 
transition to high-Reynolds-number turbulence? 
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In order to answer these questions, it appears that the Reynolds number should 
be varied from low to high values in a systematic way using the same type of initial 
and boundary conditions. Moreover, ideally the turbulence should be shearless and 
homogeneous, and preferably isotropic at all scales. If it is only locally isotropic (with 
large-scale anisotropy imposed by the boundary conditions), then below a certain 
Reynolds number the whole spectrum will be anisotropic (and hence it will be affected 
by its boundary conditions) since there will not be a broad enough wavenumber range 
to allow the development of local isotropy. The recent boundary layer measurements 
of Saddoughi & Veeravalli (1994, referred to herein as S & V), indicate that not until 
R, - 600, a very high value in terms of laboratory flows, does a significant locally 
isotropic region of the spectrum develop. Below this the spectrum is affected by the 
Reynolds shear stress up to dissipation wavenumbers and there is little, if any, region 
of local isotropy. While these shear flow measurements clearly confirm Kolmogorov’s 
hypothesis that at sufficiently high Reynolds number a locally isotropic region does 
exist, they are unable to examine the characteristics of isotropic turbulence at lower 
Reynolds numbers. To do this, grid-generated turbulence is ideally suited since it has 
no shear (and hence no Reynolds shear stress spectrum) and although the large-scale 
field is not quite isotropic, it is much closer to isotropy than that of shear flows 
(see 63). 

The traditional method of generating (approximately) isotropic turbulence is by 
means of a grid: a rectangular array of (usually square sectioned) bars placed at 
the entrance of the test section (Batchelor 1953; Comte-Bellot & Corrsin 1966). As 
mentioned above, the Rj. is low, typically in the range 50 to 150, although there 
are some isolated results at high R;.t. The reason for this is that grids produce 
low-intensity turbulence; the ratio of the r.m.s. to mean velocity, u / U ,  is generally 2% 
or less in the downstream region where the flow has reached isotropy. On the other 
hand, high R, can be easily obtained in shear flows because of their high intensities 
(jets, for example, have u / U  of around 25%, e.g. Townsend 1976). In order to 
produce high-R;. grid turbulence, the grid mesh must be large and so too must be 
the mean speed. The former requires extremely large tunnels since the tunnel must 
be many meshes wide to provide isotropy, the latter gives rise to probe resolution 
problems and to unwanted compressibility effects. 

Many years ago, Corrsin suggested placing propellors on the grid to increase 
the turbulence intensity, but apparently he did not implement it (J. Lumley, pri- 
vate communication). Gad el Hak & Corrsin (1974) did publish work on a grid 
with attached jets, but this only modestly increased the RI.. There have been other 
attempts (e.g. Ling & Wan 1972) to produce active grids, again with limited suc- 
cess. However, we recently became aware of a major advance by Makita and his 
colleagues at Toyohashi University of Technology (Makita et. al. 1987; Makita 
& Sassa 1991; Makita 1991). They designed, constructed and tested an active 
bi-plane grid with randomly flapped agitator wings. Their results (most compre- 
hensively described in Makita 1991) were particularly encouraging: in a tunnel 
of only 0.7 x 0.7 m’ and a mean velocity of 5 m s-’, an R;. of nearly 400 was 
achieved. The probability 
density functions (p.d.f.s) of the velocity field were well behaved and the spec- 

The flow had good homogeneity and was shearless. 

? Kistler & Vrebalovich (1966) achieved an R1 of over 500 in a massive wind tunnel built for 
aircraft research. Their results show a clear inertial subrange. However, there was no systematic 
variation of R; and many of the statistics relevant to the present work were not computed. The 
tunnel was dismantled soon after the measurements were made. 
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trum showed well over one decade of inertial subrange, of slope close to -5/3. 
The only slight drawback was that the anisotropy, u /v ,  was 1.22. This is a lit- 
tle higher than that of conventional grid turbulence which has values around 1.1 
(Comte-Bellot & Corrsin 1967). This aspect, which we will see does not appear 
to affect the inertial-range dynamics, does preclude accurate determination of the 
three-dimensional spectrum from the u and u components, assuming isotropy of the 
large-scales. 

Briefly, Makita places triangular agitator wings on each grid mesh. A regular pulse 
generator rotates the grid bars (and hence the wings) and at the same time the motor 
is fed a random pulse which reverses the rotation of the grid bar. Thus the wing, 
always in rotational motion, reverses its direction randomly, providing a flapping 
motion. Each bar is separately controlled, providing random flapping between bars. 
The resultant turbulence has high intensity (up to 15%) and an integral scale larger 
than the mesh (rather than smaller produced by conventional grids). Both act to 
produce the high RA. 

We decided to build a Makita-style active grid in order to study scalar mixing at 
high-Reynolds-numbers. Our preliminary experiments led us to explore the questions 
raised above concerning the evolution of grid turbulence with Reynolds number, and 
this is the subject of the present work. Results on scalar mixing are in preparation. 

Our objective, then, is to study the evolution of grid-generated turbulence with RA. 
In particular we wish to determine whether we can produce high-Reynolds-number 
turbulence in a laboratory-scale wind tunnel that has characteristics similar to those 
measured at high-Reynolds-number in the atmosphere and oceans, but without the 
complicating effects of shear. If this can be achieved then we may address many 
questions concerning the fine-scale structure that cannot be properly studied in the 
uncontrolled environment. 

The outline of the work is as follows. After describing the apparatus in $2 and 
the grid performance in 53, we examine the nature of the velocity spectra over the 
Rl range 50 to nearly 500 in $4. Emphasis is placed on how the magnitude of the 
scaling exponent, n, and thus the Kolmogorov ‘constant’, varies with Ri. We then 
turn to an examination of the p.d.f. and conditional dissipation of velocity differences 
determined over inertial subrange intervals. These results are discussed in terms of 
the internal intermittency of the flow and are related to recent investigations in shear 
flows. 

2. Apparatus 
The experiments were conducted in our vertical wind tunnel which has a 40.65 x 

40.65 cm2 cross-section and is 4.5 m, long (see Sirivat & Warhaft 1983 for a sketch). 
At the entrance of the test section, we replaced the conventional static grid with 
an active grid. Our design follows that of Makita (1991) although there are some 
variations. A sketch with dimensions is shown in figure l(a) and a photo of the 
grid in the tunnel test section is shown in figure l(b). The basic operation of the 
grid has been outlined in the Introduction. Here we provide its specifications. The 
mesh spacing, M ,  between the grid bars is 5 cm, providing a tunnel cross-section 
of 8 x 8 M .  Each of the 14 grid bars is a 0.64 cm diameter aluminium rod with 
0.38 mm thick aluminium wings, attached as shown in figure l(a). Every rod is 
independently driven by a Superior Electric 5 W D.C. synchronous stepping motor 
(shown in the photo, figure lb), with 200 steps per revolution. The rotation speed of 
the rods could be varied up to a maximum speed of about 4 revolutions per second 
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(r.p.s.), but for nearly all of the measurements reported here it was set to 2 r.p.s. 
(see $3). A random signal was fed into the motor to alter its rotation direction. 
The average time between switching was of the order of a rotation period. Thus 
sometimes a bar would undergo more than a full cycle before switching while other 
times it would only undergo a fraction of a cycle. The appearance of the whole grid 
when operating in this random mode was of a shimmering nature since all of the 14 
rods were acting independently. (Note that all the wings are in the same plane along 
a particular grid bar. This aspect could also be randomized but we have not done 
so.) 

The grid was also operated in what we call a synchronous mode. Here, the random 
switching was not used and the initial condition was that all of the North-South wings 
were horizontal and all of the East-West wings were vertical. Their relative orientation 
did not change over the measurement duration. (Their rotation direction was reversed 
on alternate rods so as not to add net vorticity.) The main difference between the 
random and synchronous modes was that the latter produced a lower turbulence 
intensity and a smaller longitudinal integral scale (and thus a lower R;. for the same 
mean wind tunnel speed). Moreover, because of the synchronous rotation, the low- 
wavenumber energy-containing region of the spectrum was more contaminated by 
the grid bar rotation frequency (see $3) and thus most of our results in this paper 
focus on the random mode. (On the other hand, the synchronous mode was found 
to be better behaved than the random mode for the investigation of passive scalars, 
probably due to the smaller integral scale. This is the subject of a future paper.) 
Apart from these differences in performance, the nature of the results were similar 
for the grid operated in either mode. Thus, spectral slopes and p.d.f.s were similar 
when the Reynolds number was the same. 

The tunnel speed was varied from 3 m s-‘ to 14 m s-l giving a variation in R, 
from 99 to 473. (Some supplementary measurements at Ri, = 50 and 100 were done 
using conventional static grids.) The rate of rotation of the grid bars only slightly 
affected the turbulence level or R,. More significantly, it did produce a small spike in 
the spectrum at twice its rotation frequency (see $3). 

To obtain good horizontal homogeneity in the velocity field, the grid had to be 
carefully tuned. Initially there was a large velocity deficit near the walls. Holes 
were drilled in the wings adjacent to the walls to reduce this. (These ‘half‘ wings 
were attached to the frame of the grid and did not rotate, see figure la.) Notice 
that in figure l(b) there appear to be holes also in the rotating wings. All of these 
(excepting those on the grid bars closest to the walls (figure la)) were taped over for 
the experiments to be described below. The mean velocity profiles will be discussed 
in the next section. 

The velocity field was measured with a TSI 1241 tungsten X-probe calibrated using 
the method due to Browne, Antonia & Chua (1989). Corroborative measurements 
for the u component were made with a single ‘u’ probe. The 3.2 pm tungsten wires 
with a length to diameter ratio of 200 were operated at an overheat ratio of 1.8 
in conjunction with Dantec 55M01 constant-temperature anemometers. Tunnel and 
electronic noise (determined when there was no grid in the flow) was subtracted 
from the spectra on a mean-square basis. Wire end effect corrections were made 
using Wyngaard’s (1968) method. All signals were low-pass filtered to eliminate high- 
frequency noise and digitized with a 12 bit A/D converter. Typically 4 x lo5 samples 
were taken for each data record, rapidly for the spectra (order of a Kolmogorov time 
period) but slowly (order of an integral time period) for the p.d.f. measurements to 
provide statistical independence. 
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Wings 

Grid bars 
dia. 6.4 mm Outside frame 

40.63 x 40.63 cm 

FIGURE 1. The active grid. (a)  A sketch (not to scale). The circles represent holes in the wings, used 
to tune the flow so that it was close to horizontally homogeneous. The holes in the static wings 
(those attached to the tunnel wall) were 10.3 mm in diameter. Those in the rotating wings (attached 
to the grid bars) were of 11.9 mm diameter. ( b )  A photo of the grid. The tunnel is vertically oriented 
and the flow is upwards. 
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FIGURE 2. Mean ( U ) ,  longitudinal and transverse r.m.s. profiles, (u2) ' I2  (solid squares) and (u2)"* 
(open squares) respectively, and the cross-correlation coefficient between u and u,p,,. RJ, = 275, 
random mode. 

3. The grid performance 
Before describing the main results concerning the evolution of the spectrum and 

p.d.f. with Reynolds number, we will outline the performance of the active grid, 
paying particular attention to its departure from 'ideal' grid-generated turbulence. 

Cross-stream profiles of the mean speed, U ,  the root-mean-square longitudinal ve- 
locity and transverse velocity, (u2)' /* and (v2) l/* respectively, and the cross-correlation 
coefficient between u and v, puo(- ( u ~ ) / [ ( u ~ ) ~ / * ( v * ) ~ / ~ ]  where (uv) is the kinematic 
Reynolds stress) are shown in figure 2 for the grid run in random mode at 6.9 m s-l 
(& = 275). There is good homogeneity in U for nearly 20 cm in the transverse 
direction and there is no Reynolds stress for even a larger core than this. The r.m.s. 
u and v profiles curve in opposite directions giving quite strong anisotropy as the 
walls are approached. In the central core region ((u~)/(v~))'/~ is about 1.21. This 
result, which is consistent with that of Makita (19911, is higher than that of static grid 
experiments which yield values of 1.1 or slightly less (e.g. Sirivat & Warhaft 1983). 
We will return to this departure from isotropy in a moment. The profiles in figure 2 
are typical of those done at other Reynolds numbers. 

Figure 3 shows the decay of the longitudinal velocity variance and third moment 
as a function of x / M .  Because of the large mesh ( M  = 5 cm) and also because 
the test section had to be modified to accommodate the active grid, the test section 
was only 80M in extent. Nevertheless, the form of the variance decay law is similar 
to that observed in conventional grid-generated turbulence (e.g. Sirivat & Warhaft 
1983). The decay law for U = 6.7 m s-I was ( u 2 ) / U 2  = 1,23(x/M)-',*'. Nearly all of 
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X l M  

FIGURE 3. A typical longitudinal variance decay (circles) and third moment decay (squares). 
U = 6.7 m s-', R?, = 319 (at x / M  = 68). For these measurements, done in the random mode, the 
bar rotation speed was 1 r.p.s. This produced a slightly higher RA (for the same mean speed) than 
did the higher rotation speed of 2 r.p.s., used for all the other measurements reported in this paper. 

the measurements to be described in $4 were done at x / M  = 68 where the turbulence 
intensity u / U  was less than 10%. Table 1 lists a number of flow conditions and 
their relevant flow parameters. Typical u and u spectra for u = 7.1 m s-' (Rl = 262, 
random mode) are shown in figure 4. Unlike conventional grid turbulence they show 
a clear scaling region. Its extent and slope will be discussed in $4. Here we draw 
attention to the spikes at k l  = 3.5 m-'. These are due to the rotation rate of the grid 
bars. In order not to contaminate the inertial-subrange dynamics we adjusted the grid 
bar rotation speed such that the spikes would occur at wavenumbers below those of 
the energy-containing scales. It was set to 2 r.p.s. for nearly all of the measurements 
reported here. (Changing the rotation speed slightly changed the value of RA but did 
not have a noticeable effect on the nature of the turbulence statistics.) The insert 
in figure 4 shows energy spectra determined by multiplying the power spectra by 
k l .  Their peak provides a very good estimate of the integral scale of the turbulence 
($4). They peak at kl - 10 m-l, well above the wavenumber of the spikes. For the 
case presented in figure 4 the spikes were responsible for 6% of the total r.m.s. This 
was fairly typical for the random mode of operation at other RA. (The values of 
(u2), Ri, etc. in table 1 were determined with the effect of the spike subtracted from 
the spectrum on a mean-square basis.) Varying the grid bar rotation speed did not 
produce any noticeable change in the statistics of the velocity field for the inertial and 
dissipation ranges, providing we kept the spike at a lower wavenumber than the peak 
energy. This, and our observation that the synchronous mode gave results consistent 
with the random mode (although for a given mean speed the Ri, was lower) indicated 
that our results are relatively insensitive to the way we operated the grid. Moreover, 
when working at low RA, our active grid produced results consistent with conventional 
grid measurements ($4). Thus we do not believe the spikes contaminated the inertial- 
and dissipation-range statistics. 

P.d.f.s of the u and u fluctuating components of velocity are shown in figure 5,  for 
U = 7.1 m s-' (R?b = 262, random mode). For conventional grid turbulence, these 
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FIGURE 4. Longitudinal velocity spectrum, F i l ( k l ) ,  solid line, and transverse spectrum, F22(kl), 
dashed line. RA = 262, random mode. The insert shows k l F l l ( k l )  (solid line) and klF22(kl) (dashed 
line); k l  is the longitudinal wavenumber = 27c:f/U. 

are Gaussian with the skewness S,(= (u3 ) / (  ( u ~ ) ) ~ ' ~ )  and kurtosis K,(= (u4) / (u2)*)  
having values of 0 and 3 respectively. Here there are small departures: S,  = 0.19 and 
K ,  = 3.17. For u, the skewness and kurtosis, S, and K,, were respectively 0.03 and 3.41. 
The relatively high turbulence intensity (table 1) and its rapid decay produces a small 
divergence of the turbulence kinetic energy, a/ax j (  $ (uiuiuj)). Although we determined 
this to be less than 5% of the turbulence energy dissipation rate E, the existence of 
the triple moment induces a slight skewness in u. The experimentally derived law 
for the third moment is also plotted in figure 3. It is ( u 3 ) / U 3  = 2 . 5 8 ( ~ / M ) - ~ . ~ ~  for 
U = 6.7 m s-'. This in turn possibly produces the small departure from the Gaussian 
state for u via higher-order terms in the equation for v4. Of course the skewness in u 
must be zero by symmetry and our results confirm this to a high degree. Although 
the large-scale velocity field is not strictly Gaussian we will show that its departure 
from the Gaussian state is very small compared to the highly non-Gaussian statistics 
of velocity differences and derivatives determined in the inertial subrange. 

We now return to the departure from isotropy observed in the r.m.s. u and u profiles 
of figure 2. As noted in the Introduction, the anisotropic effects of shear flows are 
evident in the inertial subrange as well as at large-scales. Thus it is important to 
determine whether the anisotropy of this flow (which is much less than that observed 
in shear flows) affects the inertial subrange. Figure 6 shows the coherence between 
u and u in the laboratory coordinates and in transformed coordinates, with a 45" 
rotation. Here u' = (u + u ) / $  and u' = (u - v)/$. In the laboratory coordinates, 
there is no coherence between u and u while with the 45" rotation there is coherence 
at low wavenumbers but this drops to zero by klq - 3 x (The cross-correlation 
coefficient between u' and u' was 0.21.) Also shown in figure 6 is the u spectrum 
compensated to produce a plateau in the scaling region (i.e. the inertial subrange, 
see 54.1). It is clear that the coherence between u and u is essentially zero by the 
time the inertial subrange begins. We note that the 45" rotation produced the largest 
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UJU rms, ~ ~ / ~ I r n , ,  

FIGURE 5. The u (circles) and u (squares) probability density functions. S,, = 0.19, K ,  = 3.17; 
S ,  = 0.03, K,. = 3.41. The v p.d.f. has been moved vertically 2 decades with respect to the u p.d.f. 
The solid curves are Gaussian. R, = 262, random mode. 

coherence. By contrast, in shear flows the cross-spectrum of u and v (and hence its 
coherence) is significant well into the inertial subrange at these Reynolds numbers. 
(See for example figure 20 of Saddoughi & Veeravalli.) 

In summary, the active grid is not quite as 'clean' as (lower Reynolds number) 
traditional passive grids, showing a greater departure from isotropy in the velocity 
field at the large-scales as well as having a small departure from strictly Gaussian 
p.d.f.s. However, the anisotropy appears to be strictly confined to the integral scales, 
making this grid well suited to an investigation of the behaviour of inertial-subrange 
structure. 

4. Results 
Our objective is to study the way grid turbulence evolves as a function of Reynolds 

number. The results are reported in terms of the spectra ($4.1) and the p.d.f.s and 
conditional statistics ($4.2). This categorization is useful since the classical formulation 
of the Kolmogorov similarity theory (K41) is in terms of spectra (or related second- 
order structure functions) while the details of the intermittent structure are best 
described in terms of the p.d.f.s and conditional statistics (Kolmogorov 1962, referred 
to herein as K62). Before we begin, however, we will outline the flow parametrization. 
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FIGURE 6. The coherence between u and v,Cohuo. The solid line (essentially zero) is Coh,, in 
laboratory coordinates. The dashed line is Coh, with the coordinate system rotated 45” with 
respect to the flow direction. The curve with the plateau is the compensated velocity spectrum to 
be discussed in $4.1. The plateau region is the inertial subrange. 

We report our results in terms of the Taylor-microscale Reynolds number RE.(= 
uA/v) where the Taylor microscale is defined in the usual way as 

I I  = [(u2)/((au/ax)2)]”2. ( 5 )  
The longitudinal velocity derivative in the streamwise direction was determined using 
the Taylor hypothesis a( )/ax = -U-’d( )/at. This is a very good approximation 
for this shearless flow with a relatively low turbulence intensity of (around 7%, 
table 1). 

From equation (4) it follows that 

E = 1 5 v ( ~ ~ ) / I I ~ .  (6) 
Consistent with the findings of Sirivat & Warhaft (1983), the value of E determined 
from (6) was within 5% of E determined using the isotropic relations (Batchelor 1953) 

r m  

In fact, for the values of 2 and Rl listed in table 1, 2 was determined using equations (7) 
and (6), rather than directly, using equation (5) .  Another useful Reynolds number is 
based on the integral lengthscale, l, and is defined as 

& = ue/v .  (9) 
There are various ways of defining l (see e.g. Sirivat & Warhaft 1983). We determined 
it by finding the wavenumber at which the klFll(kl)  spectrum peaked (see for example 
the inset of figure 4). Since there is scatter associated with this method, we correlated 
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R, 
FIGURE I .  The relation between & and R,.. The data were obtained with the active grid and 
supplemented with use of a passive grid at low-Reynolds-number. (a) & us. Rj. The line is the best 
fit to R/ = (A/15)R?. (b )  8 /Q  U S .  &. 

& with Ri (which can be accurately determined). A plot of & us. R? is shown in 
figure 7(a).  From equations (3), (6 )  and (9) it follows that 

& = (A/15)R;. (10) 

From the plot of figure 7(a)  we determined A to be 0.9. Defining the Kolmogorov 
microscale q in the usual way as ( v ~ / E ) ’ / ~ ,  equation (10) can be restated as 

t / q  = A1I4R;I4. ( 1 1 )  

For reference a plot of this is shown in figure 7(b). The values of / listed in table 1 
have been determined using equation ( 3 ) ,  with A = 0.9, i.e. we re-define t (thereby 
eliminating the scatter) by 

where E is determined from (7). 
/ = O . ~ ( U ’ ) ~ ’ ~ / E  (12) 
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k,  
FIGURE 8. The u spectra (left-hand set) and v spectra for the various experiments. The symbols are 
as follows (R = random, S = synchronous): 0, Rn = 473 R; 0, Ra = 330 R; 0, Rn = 275 R;  R, 
Rn = 207 S ;  19, R:, = 174 S; x, Rn = 124 S; +, RJ, = 100 (conventional grid, M = 10.2 cm); A, 
Rn = 50 (conventional grid, M = 2.54 cm). 

4.1. The spectra 
Figure 8 shows the one-dimensional u and u power spectra. The RA range is from 50 
to 473. The lowest Rn measurements (Rn = 50 and 100) were done with conventional 
static grids. All of the measurements at higher RA were done with the active grid 
operating either in the synchronous or random modes. Our results are similar (and 
have comparable scatter) to the recent compilation of S & V (their figure 9 )  which 
cover the Rn range from 23 to 3,200. Such plots have provided strong support for 
K41 scaling. 

A more stringent test for Kolmogorov scaling is to display the data in compensated 
form. Figure 9(a)  shows the FI1 spectra multiplied by ~ ~ ~ / ~ k : / ~ .  The inertial range 
should be horizontal on such a plot. The four representative compensated spectra are 
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for R1. = 99,199,373 and 448. While there is a trend towards becoming horizontal 
with Rp", there is still a significant slope at the highest Reynolds number. The dashed 
lines show the accepted value of the Kolmogorov constant. It falls approximately 
midway between the low and high ends of the scaling range. 

The spectra of figure 9(a) show, then, that while there clearly is a scaling region, 
its slope is not -5 /3  even for the highest RA. It appears that the spectra are not yet 
self-similar. In order to describe them, we use a modified similarity form similar in 
approach to Sreenivasan (1991): 
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where nl and n2 are the slopes of the scaling region for the u and u spectra respectively 
and C1, and C2* are now Kolmogorov variables: both C, and n are functions of Rl 
(and as Rl -+ m,nl,n2 --+ 5/3 and C, + C, equations (1) and (2)). In figure 9(b) 
we have plotted C1, = F l l ( k ) ~ - ~ / ~ k l ' r " ~ - ~ / ~  vs. klq  for the four spectra of figure 9(a). 
The value of nl, which varied from 1.40(R~ = 99) to 1.58(Rl = 448) was determined 
by trial and error such that the scaling region would be horizontal. Note that C1, 
decreases as Rl increases but even for the high-Rl case its value is approximately 0.7, 
well above the accepted high-Reynolds-number estimate of approximately 0.5 (Monin 
& Yaglom 1975; Sreenivasan 1995). Before we look at the evolution of C, we will 
examine the way the slope of the spectra varies with Rl. 

Figure 10(a) is a summary of the best-fit scaling exponent, nl, for all the u spectra 
we measured over the range 50 < Rl < 473. For low RA, we have used some of our 
conventional (static) grid data. Both the synchronous and random modes of running 
the grid have been included. In figure 10(b) we have plotted the same data as lO(a) 
as a function of &. We have also included the low-Reynolds-number static grid data 
of Jayesh, Tong & Warhaft (1994, figure 7). Finally in figure 1O(c) we have plotted 
the slope of the transverse spectra, n2, as a function of RA. 

The results of figure 10(a,b) show that below RA - loo(& - 600) the spectra 
have a scaling region in the range 1.3 to 1.4. The relatively large uncertainty is due 
to the small width of the scaling region. (Below RA - 50 no scaling region could 
be discerned at all (Jayesh et. al. 1994).) There is then a relatively well-defined 
transition region extending from RA - 100 to R), - 200 where the scaling exponent 
steepens to a value of about 1.52. Beyond RA - 200 the slope tends to increase 
very slightly. Our maximum slope was 1.58 at Rl - 473. We emphasize the high 
degree of reproducability of the high-Reynolds-number experiments (RJ. > 250). The 
experimental scatter was kO.01. 

The transverse, u, spectra (figure 1Oc) follow a similar trend to that of u but the 
slope at a particular R:, is less and it corresponded to a shorter scaling region. This 
is consistent with the spectra of S & V (e.g. their figure 12). Note, here too, the rapid 
change of spectral slope up to Rl - 200. 

In figures 10(a) and 1O(c) we have fitted curves (which were empirically described 
well by -2/3 power laws) to the u and v spectral exponents, n1 and 112. Defining 
p 1  = 5/3 - nl and p 2  = 5/3 - n2, we find 

(15) 

(16) 
These -2/3 power laws suggest that a 5/3 scaling region (to within a measurement 
error of 0.01) will not occur until Rn - lo4. We will show below that this is consistent 
with recent high-& measurements done in large wind tunnels and in the atmosphere. 

We now return to the value of the Kolmogorov constant. Figure 11 shows a plot 
of C1,  and C2* as a function of p .  (The values of C, were determined from all of the 
measured spectra in the same manner as for the four spectra in figure 9(b).) The best 
fit line to C1, is 

pi = 5.25RT 213 

and 
2 / 3  p2 = 7.51RT . 

C1, = 0.51 + 2.39~1. (17) 
Thus, when p1 = O(n1 = 5/3),C1, = C1 = 0.51. The generally accepted value of 
the three-dimensional Kolmogorov constant C is 1.5 (e.g. Monin & Yaglom 1975) 
and the one- and three-dimensional constants are related by C1 = 18C/55. Thus 
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p = 5 / 3 - n  

FIGURE 11. C1. (open circles) and Cz. (closed circles) (equations (13) and (14)) plotted as a function 
of p = 5/3 - n where n is the slope of the respective spectrum. For Cl., the line is that of best fit. 
For C2*, the best fit line has been forced through Cl.(p = 0) x 4/3 at p = 0. 

C1 = 0.49. Our extrapolated value of 0.51 is remarkably consistent with this value. 
We emphasize that equation (17) is a best fit. 

The ratio of the Kolmogorov constants C2/C1 must be 4/3 if n1 = n2 = 5/3. In 
order to determine the best fit line for C2. we have used the value C2 = 4/3 x 0.51 
for p2 = 0 yielding 

Finally, the dependence between C, and RA can be determined by substituting equa- 
tions (15) and (16) into (17) and (18): 

(19) 

(20) 
Figure 12 shows a plot of C1. and C2* as a function of RL with the fitted curves 
(equations (19) and (20)). We have also included C1, determined from the data of 
S & V. These data will be discussed in $5. 

We now turn to the issue of isotropy. Assuming our flow is axisymmetric (the w 
statistics were determined to be the same as the v statistics), the isotropy is determined 
by the ratio of the u and v statistics. Figure 13 shows F22(kl)/F11(kl), i.e. the ratio 
of the v to u spectra, for RA = 50,262 and 377. At small wavenumbers, this ratio 
should be 0.5 if the energy-containing scales are isotropic. Our ratios are smaller 
than this, reflecting the large-scale anisotropy discussed in $3. In the region for which 
our spectra exhibit power-law scaling (signified by arrows in figure 13) there is, at 
the higher Reynolds numbers, a significant wavenumber region for which the ratio 
of the spectra is approximately 4/3, the value that must occur if both the u and u 
spectra have slopes of -5/3 and the turbulence is locally isotropic (this is the ratio 
C2/C1, equation (1)). The width of the 4/3 region is approximately one decade for the 
highest RA. For higher wavenumbers (the dissipation range), the ratio F22(kl)/Fll(kl) 

must increase as the spectra roll off exponentially and our spectra show this. (Noise 
appears to be limiting the upper and lower spectra at k l q  - 0.5.) 

C2. = 0.68 + 3.07~2. (18) 

C1, = 0.51 + 12.6RT2I3, 

C2. = 0.68 + 23.1RY2l3. 
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Further insight into local isotropy in the inertial subrange can be gained by 
examining the ratio C2.;/C1*. From equations (13) and (14) this is 

c,* 100 y : 

-.. . - 
3 - L  -- -2 - - - - - 

10 , , I I , I , ,  I I I , I I I , I I I I I , , , .  

Our experiments (figures 10(a,c)) show that n2 # nl. A plot of nl - n2 is shown in 
figure 14. Since y12 is always less than nl, equation (21) indicates that F22(kl)/F11(kl) 
should increase with wavenumber and this is apparent for the lowest curve in figure 13. 
(We emphasize that this discussion holds for the scaling range only.) As RL increases, 
the slope of F22(kl)/FIl(kl) decreases (figure 13) since the difference between nl and 
nz diminishes. If n1 = 112 = n then it can be shown from the isotropic relation between 
Fl l (k1)  and Fzz(k1) (S. B. Pope, private communication), that 

cz*/c1* = i( l+ n )  (22) 
(yielding 4/3 for n = 5/3). For our high-Reynolds-number experiments n1 - 112 - 1.6 
so Cp/Cl.  - 1.3 which cannot be experimentally differentiated from 1.33 (figure 13). 

lo-' 

The ratio C2*/C1* (from the data of figure 12) is shown as a function of RI. in 
figure 15. Notice that C2./C1, (figure 15) is not equal to F22(kl)/Fll(kl) (figure 131, 
even for the high-Reynolds-number cases. Even here the small difference between nl  
and n2 is significant and the relationship between C2./C1.: and F22(k1)/F11(k1) must 
be determined from equation (21). Figure 15 suggests that the Kolmogorov value of 
4/3 will be reached by Rl - 2200. S & V comment that only for their highest RA case 
(of RA = 1450) do they see appreciable local isotropy. Our extrapolation is broadly 
consistent with their results. 

In spite of the lack of complete similarity even at our highest Ri, we have shown 
that all of our results are in agreement with the high-Reynolds-number scaling 
relationship / / q  K Rr3/4 over the entire Reynolds number range (figure 7b). As stated 
in the Introduction, this law assumes that E - ( u ~ ) ~ / ~ / [ ,  i.e. that there is a cascade 
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k, 
100 

FIGURE 13. The ratio of the transverse to longitudinal spectra, F**(kl)/FIl(kl). The arrows mark 
the beginning and end of the Fll(k1) scaling range, i.e. the horizontal portion of the spectra when 
plotted in the manner of figure 9(b). The dashed line is the isotropic value of 4/3. The bottom 
curve is for RJ, = 50 (done with a conventional grid). The middle curve (Ri = 262) and top curve 
(RA = 377) were done with the active grid, random mode. 

FIGURE 14. The difference between the longitudinal and transverse scaling exponents (nl and n2 

respectively) as a function of RJ.. The curve fit is nl - n2 = 4.7RT4I5. 

and that the (small scale) dissipation rate is determined by the large-scales. This 
in turn implies that there is a significant separation of scales. In order to provide 
a measure of the overlap between the integral and dissipation scales we integrated 
the Fl l (k l )  spectra and the k : F l l ( k l )  dissipation spectra (to be discussed further in 
$4.2). The results for RA of 99 and 448 are shown in figure 16. The data are 
represented so that for the energy spectrum the curve diminishes from unity to zero 
with increasing wavenumber, providing a measure of the ratio of energy above a 
particular wavenumber to the total amount for all wavenumbers. For the dissipation 
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FIGURE 15. C2./C1* as a function of Ri. The curve fit is C2./C1. = 2.14Rj 
The horizontal line is 413. 
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FIGURE 16. 1 - s:' Fll(k!)/(u2) dkl (curves decreasing with increasing k l )  and 15v J:' kfFll(kl)/~dkl 
(curves increasing with increasing k l ) .  The dashed curves are Ri = 99 (synchronous mode). The 
solid curves are for Ri = 448 (random mode). 

spectra the curve is the ratio of the dissipation below a particular wavenumber to the 
total amount for all wavenumbers. Thus where the two curves cross, the proportion 
of energy from the integral scales overlapping with the dissipation scales is equal to 
the proportion of dissipation overlapping with the integral scales. We will call the 
value of this normalized integral I,. It is a useful (but non-unique) indicator of the 
overlap. 
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R, 
FIGURE 17. The value of I, ,  the vertical ordinate (figure 16) where the energy and dissipation 

curves cross. The best fit curve is I ,  = 1.2 R,”2. 

A plot of I ,  us. RA is shown in figure 17. As the two examples of figure 16 have 
already shown, its value decreases with Rl, from about 0.11 at R, N 100 to 0.06 for 
R, - 450. A -1/2 power law fitted the data well, yielding 

I ,  = 1.20R~’/*. (23) 
We note that above RA - 300 the dependence of I ,  on R, is very weak. Here too, the 
variation in n was small (figure 10a,c). This is the region of strong or fully developed 
turbulence, to be more fully explored in the next section. 

The scaling law (equation (11)) shows that the ratio of the integral to dissipation 
scales increases as R;l4, or R:I2. Since 8 and q are separated by the inertial subrange 
in high-Reynolds-number turbulence, this law implies that the scaling region itself 
should grow as R;I2. Figure 18 shows the width of the scaling region (calculated 
as log (f2/f1) where f l  and f 2  are the lower and higher ends, respectively, of the 
scaling region in the frequency domain (Jayesh et al. 1994)), plotted as a function of 
Ri. Although there is considerable scatter (due largely to the difficulty in accurately 
determing fl), the data are consistent with a dilation rate proportional to R;”. On 
the other hand, the scaling region of the low-Reynolds-number (& < 1000, Rn < 130) 
spectra taken with a grid (Jayesh et al. 1994, figure 8) are not consistent with 
equation (11). There, the increase in the width of the scaling region was much slower 
than R,3I4. Jayesh et al. (1994) suggested that the weak scaling region (of slope around 
1.3) observed for & < 1000 (Ri < 130) implied a transient state. They were unable 
to study higher Reynolds numbers, but the present results confirm that this is indeed 
the case, with the strong turbulence occurring at slightly higher Reynolds numbers 

We conclude this section with a discussion of the third-order structure function, 
( A u ( ~ ) ~ )  where Au(r) is the longitudinal velocity difference in the longitudinal direction. 
Unlike the second-order structure function (or spectrum), the form of ( A u ( ~ ) ~ )  is 
model independent. For high-Reynolds-number turbulence it follows directly from 

(RA > 200). 
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FIGURE 18. The width of the Fll(kl) scaling region as a function of R,. The line increases as R;’*. 

the Navier-Stokes equations (Kolmogorov 19416) that ( A u ( ~ ) ~ )  = - ( 4 / 5 ) ~ r .  In 
figure 19 we have plotted - ( A ~ ( r ) ~ ) / ( r & )  as a function of r / q  for various R,. At high 
Ri there should be a plateau at 4/5. Our highest R;. come close to this value although 
the plateau is not very wide. The quality of these structure functions is similar to 
that observed by Anselmet et al. (1984) for a jet at RA = 536. Our plots clearly show 
that for Ri < 150 there is significant departure from the four-fifths law and this is 
consistent with our observations of the nature of the spectra in this region, a region 
which we have referred to as weak turbulence. 

4.2. The p.d$s, conditional statistics and jine-scale structure 
While approximately Gaussian at the large-scales, turbulence at the small scales is 
strongly intermittent and non-Gaussian. If the Reynolds number is high enough, the 
intermittent structure should be observable not only in the dissipation range, but also 
in the inertial subrange (K62). It is the main purpose of this section to show how 
the intermittent structure evolves with Reynolds number by studying the p.d.f.s and 
conditional statistics of inertial subrange quantities. But first we will document some 
of the derivative (dissipation) statistics. 

Figure 20 shows the p.d.f.s of du/dt  and du/dt  at Ri = 262. Both are super Gaussian. 
Their kurtoses (Ka,pt and K8u,81 defined as ( ( d ~ / d t ) ~ ) / ( ( d u / d t ) ~ ) *  and similarly for 
dv/at) are 7.3 and 9.7 respectively. The d u / d t  p.d.f. must have zero skewness 
(Sarpt = { ( d ~ / d t ) ~ ) / ( ( d v / d t ) ~ ) ~ ’ ~  and similarly defined for du ld t )  by symmetry. (Its 
measured value was 0.05.) However, must have skewness from purely kinematical 
considerations (e.g. Wyngaard & Tennekes 1970). Its value for the p.d.f. of figure 20 
is 0.49. Figures 21(a) and 21(h) show plots of SaUlat, Kauldr and Kaupt as a function of 
Ri. We have also included some high-Reynolds-number shear flow data taken from 
the compilation of Champagne (1978) as well as some low-Reynolds-number data 
from Tong & Warhaft (1994). The limited Reynolds number range and scatter of 
the present data are apparent from the graph, but the trend of the data (particularly 
for the kurtosis) as well as their magnitude is consistent with the shear flow data. 
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FIGURE 19. The compensated third-order structure function, - ( ( A ~ ( r ) ) ~ ) / ( m ) .  The symbols are: 
+, Rl = 99s; 0, RJ, = 134R; 0, Ri = 319R; x, RA = 448R. The dashed line is 415. 
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FIGURE 21. The skewness ( a )  and kurtosis (h )  of the velocity derivatives as a function of Rr. ( c )  The 
ratio Open circles are for the present work. Closed diamonds are from shear flow 
data (Champagne 1978). Open squares are KpLlat, present work. Closed circles for Ksu,ar are from 
Tong & Warhaft (1994). 

Figure 21(c) shows the ratio S3ul?t/(Kdu,3t)3/8.  The data are again consistent with 
the shear flow data in which the ratio is not Reynolds-number dependent and is 
roughly equal to 0.25. It supports the prediction of Wyngaard & Tennekes (1970) 

The ratio of the derivative variance, ((du/i3t)2)/((dv/dt)2), is given in table 1. Its 
value varies from 0.57 to 0.53. The isotropic value is 0.50. Thus our results suggest a 
small departure from isotropy at the dissipation scales. It is possible that this reflects 
the slight difference in inertial subrange dynamics for u and v (the values of the 
scaling exponents are different, figure 14). We note that the ratio is slowly tending to 
0.5 with increasing R,. 

In figure 22 we show the one-dimensional dissipation spectra for u and v determined 
by multiplying the power spectra by k:. The integral of these dissipation spectra 
yielded values of E within a few percent of those determined using the u derivative. 
These spectra, for R, = 377 were typical: there appeared to be little variation with 

that S L ? U / &  (K?u/at)3’8. 
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k, r 
FIGURE 22. The dissipation spectra, Rn = 377, random mode. The solid and dashed lines are the u 

and v dissipation spectra respectively. 

RA. The scatter was around &-5% about an average value of 0.23 in the peak of the 
u dissipation spectrum over the range 100 < RL < 473. 

We now turn to the p.d.f. and conditional statistics of the velocity difference 

Au(r) = u(x + r )  - u(x), (24) 

Av(r) = v ( x  + r )  - v(x) ,  (25)  
where r is an inertial range distance. The behaviour of the statistics of Au and Av are 
central to understanding models of internal intermittency and thus form the basis for 
modifications to K41. Beginning with K62, there has been a vast literature on this 
subject, known as the Kolmogorov refined similarity hypothesis (KRSH). The subject 
is still in ferment. Reviews are given by Kraichnan (1991) and Nelkin (1994). More 
recent work will be referred to where appropriate. 

For our highest and lowest values of RA (473 and 50 respectively) we varied r 
(equations (24) and (25)) across the whole of the scaling range. We will show that the 
statistics of Au(r) (as well as Av(r)) are quite different for those two extreme Reynolds 
numbers. But in order to examine the trend of Au(r) and Av(r) as a function of 
Reynolds number, we chose a single value of r (denoted as r,) corresponding to the 
wavenumber k,(r = 271./kl) that is halfway between the beginning and end of the 
scaling range (on a linear plot) for each spectrum. Thus as the scaling range dilates 
with Reynolds number, r, remains in the same relative position within the scaling 
region. Figure 23 shows two spectra (Rl = 50 and 473) with arrows pointing to the 
beginning and end of the scaling range as well as to the wavenumber corresponding 
to r,. (For the low-Reynolds-number case, the scaling range is very slight indeed.) 
On some occasions we will also look at the statistics of Au(r) and Av(r) for larger 
r, chosen so that its value is midway between the beginning and end of the scaling 
region on the logarithmic plot. This is denoted as rb in figure 23. 

Figure 24 shows p.d.f.s of Au and Av, normalized by their respective r.m.s. values 
for the r, separation. For the two lowest values of RL the p.d.f.s are close to Gaussian 
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FIGURE 23.  F l l ( k l )  spectra with the beginning and ends of the scaling region (sl and s2 respectively) 
and the intervals ra and rh  used for velocity difference statistics (see text) marked by arrows. Upper 
curve Ri = 473 (random mode); lower curve Ri = 50 (static grid). 

10 -5 0 5 10 
Av/Avrms 

FIGURE 24. The p.d.f.s of Au(ra) and Au(ro), (a)  and (h)  respectively. The R,, and kurtosis are 
labelled on the graph. Each graph has been shifted by 2 decades with respect to the lower one. The 
measurements for R, = 50 and 100 were done using a conventional static grid; for all other R, the 
active grid was in the random mode. The solid lines are Gaussian. 
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FIGURE 25. The kurtosis of the velocity difference as a function of r for Ri. = 100 (conventional grid) 
(circles) and 473 (active grid, random mode) (diamonds). The r normalization facilitates proper 
comparison of the two data sets. 

but for the high RA cases there are significant tails on both the Au and Av p.d.f.s. 
The values of the kurtosis are listed on the graphs. The KRSH predicts that at 
high RA the p.d.f.s of the velocity differences should be super Gaussian due to the 
internal intermittency being reflected in the inertial subrange. Figure 24 suggests that 
high-Reynolds-number in this contexts means for RA greater than 100. We will show 
below that there is in fact a fairly distinct transition in the range 100 < RA < 200. 

Of course varying r changes the shape of the velocity-difference p.d.f.s: as r increases 
they should become more Gaussian in character, while for smaller r ,  as dissipation 
distances are approached, the p.d.f.s should look more like those of the derivatives. 
Thus as r increases, the kurtosis of A u , K A ~ ,  should decrease. The variation of Kau 
with r varied across the full extent of the inertial subrange is shown in figure 25 for 
RL = 100 and 473. For both cases the kurtosis approaches 3 as r approaches e. For 
intermediate values of r ,  K A ~  is lower for the low-Reynolds-number case and this is 
consistent with figure 24. 

We now study the conditional statistics of Au and Av. K62 hypothesised that for 
high RA, the energy dissipation rate averaged over a radius r ,  E,, (where r is within the 
inertial subrange) is related to Au(r) by 

Au(r) = V ( ~ E , ) ' / ~  (26) 

where V is a stochastic variable independent of r and 6,. Thus the quantities Au(r) and 
E~ must be statistically dependent. In figure 26 we have plotted ( r , ~ : ~ ' ) ~ ' ~  and (r&?)1/3 
conditioned on Au(r,). Here E , ! ~ ~ ( =  1 5 ~ U - ~ ( ( i ? u / d t ) ~ ) )  and 7 . 5 ~  U-2((Lb/8t)2)) 
are (one-dimensional surrogates for the total dissipation) determined over a record of 
length ra, from which we also obtained Au(ra) from velocity difference between the start 
and end of the record. The data have been normalized by ( r , ( ~ " ) ) ' / ~  (or (r,(~~'))'/~) 
and are plotted as a function of Au(ra) normalized by the r.m.s. value of Au(r,). For 
high RA, figure 26 shows that both ~ f f  and E;: are statistically dependent on Au(r,): 
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FIGURE 26. The expectation of ~ f ' l  conditioned on Au(rU) and E;<: conditioned on Au(ra). (a) 
[ ( (rat::  ( b )  [ (( r& ) ' I 3  IAu(ra))] / ( ra  (t." ) ) ' I3.  For both (a) and (b)  the symbols 
are: A, Ri = 473R; +, R; = 275R; x, R; = 207s; 0, RA = 99s; 0, RA = 100 (conventional grid, 
M = 10.2 cm), 0, R). = 50 (conventional grid, M = 2.54 cm). 

( Au(r, I ) ]  /( r ,  ( E  

the curves have a pronounced V shape indicating that higher dissipation (averaged 
over r a )  is associated with larger velocity differences. For low RA, the conditional 
statistics are considerably flatter, showing only a weak dependence on Au(ra). This is 
particularly so for the $dl case (figure 26b). Notice the asymmetry in those curves for 
low R,. The only other determination of E, conditioned on Au(r) appears to be the 
numerical simulations of Chen et al. (1995) done up to a maximum RA of 212. They 
too observe the asymmetry. However, it is unclear what the precise correspondence 
between their RE. and ours is. Notice also in figure 26 that for R,, = 100 we have 
reported experimental results both for the active and static grids and these yield the 
same conditional expectations, showing consistency between the two different grids. 
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FIGURE 27. The expectation of IAu(ra)l conditioned on E;: and E::. Lower curves (left-hand axis): 
( IAu(ra) I l(r,&1)1'3) / I A U J , ~ ~ .  Upper curves (right-hand axis) : ( IAu(ra)l J(r,q!; ) 'I3) / IAUI ,~~ .  The symbols 
are the same as for figure 26. 

Recently Chen et al. (1995) and Thoroddsen (1995) have pointed out that a 
statistical dependence between Au(Y) and rq!' must occur, even if KRHS does not 
hold. A correlation will occur between 8:' and Au(r) on purely kinematic grounds. 
For a given Au(r), there exists a minimum possible value of the dissipation E,!' which 
corresponds to a linear variation in u over the distance r ( ~ F ' l ~ i ~  = 1 5 v ( A ~ ( r ) / r ) ~ ) .  
On the other hand, the existence of a statistical dependence between 8;' and Au(r) 
suggests a dynamical contribution. For our high-R:, experiments (figure 26a, b) both 
8:' and 8;' conditioned on Au(r) show statistical dependence on Au(r),  giving strong 
support for KRHS. 

This type 
of conditional statistic has been previously determined experimentally (Stolovitzky, 
Kailasnath & Sreenivasan 1992; Praskovsky 1992; Zhu, Antonia & Hosokawa 1995; 
Thoroddsen 1995) and computationally (Chen et al. 1993; Wang et al. 1996) but 
has not been systematically studied over a wide range of Reynolds numbers. Note 
that there is not a simple correspondence between these and the conditional statistics 
of figure 26. Our results (figure 27) show that IAu(ru)I conditioned on E,!~' shows 
similar statistical dependence on cia1 for high and low Reynolds numbers suggesting 
that kinematics are largely responsible. However, IAu(r,)l conditioned on E;:, while 
showing statistical dependence for high Rl, is nearly flat for the low-RJ. cases. Here 
the dynamical effects of the intermittency are evidently playing a role at high RA. This 
is consistent with figure 26(b). Thus the combination of our high- and low-Reynolds- 
number cases and the conditional statistics of both 8:' and 8;' on Au(r) enable 
us to separate the kinematical from the dynamical contributions to the statistical 
dependence: at low Ri. the dependence appears to be kinematical while at high Ri 
a significant dynamical effect is observed. We note that recent data of Thoroddsen 
(1995) at Ri = 208 shows independence of $' (r )  and IAu(r)l. From this single 
observation, he casts doubt on KRSH. Our findings suggest his R:, was probably not 

In figure 27 we have plotted IAu(ru)l conditioned on €Fa1 and on 
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FIGURE 28. The correlation between the velocity differences Au(r,) and Au(rb) (and their modulus) 
and the dissipation computed over the same spatial interval, q!' and 8;' (equations (27) and (28)), 
plotted as a function of RL. ( a )  p,Au(r),, ( r b ; l p / 3  (solid symbols) and p,Au(ri,, (rE;lll/3 (open symbols) for 
r = ra. ( b )  Same as ( a )  but for r = rb. ( c )  pau(,), ( r f ; l ) l / 3  (solid symbols) and pAUc,,, (re:l)l/3 (open 
symbols) for r = ro. ( d )  Same as (c) but for r = rb. 

quite high enough. The curves of figures 26 and 27 show that these quantities only 
tend to become dependent at around this value of R,.. 

The conditional statistics of AzI(r) (not shown) were consistent with those of Au(r). 
Here (Au(r)( conditioned on showed statistical dependence at high Rl while IAvl 
conditioned on showed statistical dependence for both high and low Reynolds 
numbers. 

Figures 26 and 27 are for one value of r only. That the trends of these results (with 
Ri) are not strongly dependent on the choice of r is shown in figure 28 where the 
cross-correlation coefficient between Au (both its algebraic value and its modulus) 
and E" (and E ~ ' )  defined as 

11 1/3 - 11 113 11 113 
PAu(r),(r$l)l ' = ((Au(r) - ( A u ( r ) ) ) ( ( r E r  )))/(Au(r)rms(rEr ) r m s )  (27) 

and 
11 1/3 - 11 1/3 11 1/3 

~ l A u ( r ) \ , ( n . ~ ' ) 1 / 3  == ( ( l A u ( r ) l  - ( I A u ( r ) l ) ) ( ( r s r  ) ) ) / ( / A U ( r ) / r m s ( r E r  )mu) (28) 

(and similarly for c21) is determined for both ra and rb  (defined in figure 23). Both for 
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FIGURE 29. The cross-correlations (rE,)~/; as a function of r/q for RJ. = 473 (solid symbols) 

and R). = 100 (open symbols). Squares: p,Au(r)l, (rEf1)1/3 ; circles: pIAu+),, (rF;l)1/3. 

r ,  and rb  the cross-correlation plAu~r~l ,~r~~l ) l /3  begins to become significant at Ri - 100, 
reaching values of 0.35 and 0.25 for r ,  and r b  respectively at RA - 200. The value 
of ~~Au(,)~,(,~~1)l/; is close to zero for RA < 100 suggesting that the small correlation 
between (Au(r)( and cll for low Rl is kinematical only. (Notice that the cross- 
correlation of IAu(r)l and c2* is shifted down with respect to the cross-correlation 
of IAu(r)l and E" figure 28(a, b).) It is clear from these correlations that there is a 
significant change in the turbulence characteristics for 100 < Rn < 200. Over this 
interval there is a transition from weak turbulence (with almost Gaussian p.d.f.s of 
Au(r), figure 24, and weak statistical dependence between Au(r) and E, figures 26 and 
27) to strong turbulence which exhibits non-Gaussian p.d.f.s and strong statistical 
dependence between Au(r) and E,. We observed in the section on spectra that 
there was also a distinct change in the nature of the spectrum over the same RA 
range. 

The trends in pAu(,),(,&,)1/3 are opposite to those of plAu(~)l,(rc,)l/3 (figure 28c, d ) and their 
magnitudes are much smaller (due to the rapid oscillations of the sign of Au(r)).  Both 
of these observations are consistent with the recent estimates (of Au(r) correlated 
with only) by Zhu et al. (1995) who compare jet data (Ri - 250) and atmospheric 
boundary layer data (RA - 7200). 

The variation of plAU(r)l,(re,)l/; with r / q  is shown in figure 29, for Ri = 100 and 473. 
Notice that for IAu(r)I correlated with there is a rapid decrease (to zero) as r / q  
increases. This variation has also been observed by Praskovsky (1992) and by Zhu 
et al. (1995). On the other hand, for the high-&, case, the cross-correlation between 
IAu(r)( and E~~ declines relatively slowly, remaining almost constant (with a value 
of around 0.3) within the inertial subrange. Praskovsky (1992) points out (contrary 
to his own findings) that p, should not depend on r within the inertial subrange 
for high-Reynolds-numbers. Our results show the importance of not using the same 
velocity component for Au(r) and E,. 
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Finally, we have determined the intermittency exponent (K62) from the autocorre- 
lation of E (Praskovsky & Oncley 1994; Nelkin 1994): 

Figure 30(a) shows pEE(r )  for the one-dimensional surrogates E” and E ~ ~ ,  plotted as a 
function of r / q  for RA = 100 and 377. From these (and estimates at other RJ,p was 
determined by compensation, i.e. by multiplying p E E ( r )  by r p  and adjusting p so the 
curve became horizontal in the inertial range. These estimates of ,u are plotted as a 
function of R, in figure 30(b). Below R; - 1 0 0 , ~  - 0. This result is consistent with 
the nature of the velocity difference p.d.f.s (figure 24) and the conditional dissipation 
(figures 26 and 27) in this region. There is then a steep rise to a value of around 
0.11 at R, NN 450. Measurements in very high-Reynolds-number flows show that p is 
approximately constant, with a value of approximately 0.2 (e.g. Praskovsky & Oncley 
1994; Chambers & Antonia 1983). Evidently, we are not yet at a sufficiently high RA 
to attain this value. This is consistent with the spectra ($4.1) which are still evolving 
at R, - 500. 

We point out that the curves in figure 30(a) appear to asymptote to a non-zero 
value at r / q  + GO (particularly at the lower R?. where the inertial range ends at  a 
lower value of r / q ) .  The asymptotic value can be calculated by decomposition of the 
dissipation into mean (E) and fluctuating ( E ’ )  components as follows: 

((c(x) + e’(x))(~(x + r )  + E ’ ( X  + r ) ) )  
( ( E  + e Y )  lim PcAr) = 

1 - 5  

- ( E ( X ) E ( X  + r ) )  + (E’(x)E’(x + r ) )  - 
(2) + ( E ’ 2 )  

The asymptotic limits of pCE(r ) ,  assuming E(x) = E(x + r )  (homogeneity) and limr+m, 
(F’(x)E’(x + r ) )  = 0 are indicated on figure 30(a). 

The intermittency exponent provides the correction to K41, modifying the 5/3 
scaling exponent to 5/3 + p / m  where m is model dependent but is probably close 
to 9 (Nelkin 1994). Thus the slope of the spectrum is only slightly increased at 
high-Reynolds-numbers. Such a correction has not yet been observed. We will argue 
in the next section that this is because the RI. must be greater than lo4, a value even 
larger than can be obtained from atmospheric measurements. 

5 .  Discussion 
Our experiments have shown that by RA - 200 the turbulence spectrum has a 

broad scaling range with a slope close to the Kolmogorov value of 5/3 and that the 
internal intermittency is well developed, showing interaction between the inertial and 
dissipation scales. As the Reynolds number is further increased the variation of the 
slope of the scaling exponent is only weakly dependent on RA. 

How do these findings relate to other experiments done at much higher Reynolds 
numbers? An extrapolation of the scaling exponent, nl, (figure 10 and equation (15)) 
suggests that a true 5/3 exponent will not occur until R?, - lo4. At this value of Ri 
we estimate C ,  (equation (1)) to be 0.51. Recently Praskovsky & Oncley (1994) have 
examined data from the atmosphere and from large wind tunnels in the Ri range 
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FIGURE 30. The estimate of p using equation (29). (a) The auto correlation of &I1 (full line) and E" 

(dashed line). Lower curves are for Rn = 100 (static grid); upper curves are for Rl = 377 (active 
grid, random mode). The arrows signify the beginning and end of the scaling region. The horizontal 
lines are s2/(E2 + ( E ' ~ ) )  (see text). ( b )  p determined from the slopes of pec(r). Open circles are for dl; 
plus signs are for eZ1. 

lo3 to lo4. They do not find any measurable departure from n = 5/3 (our figure 10 
suggests that at 103,n = 1.63 a value very close to 5/3). However, they find that 
C1 (equation (1)) is not constant but has a small dependence on Rk, varying from 
about 0.65(R~ - lo3) to 0.5(Rk - lo4). This result is remarkably consistent with an 
extrapolation of our results which show (figure 12) that at RA - lo4, C1. = C1 = 0.51. 
(At Rh = lo3 our value of C1, is 0.64 (figure 12 and equation (19)) but C1 cannot be 
determined since the slope of the spectrum is still significantly different from 5/3.) 

The results of S 2% V also match well with our lower-Reynolds-number experiments. 
They show that not until Rk - 1500 is there a significant inertial subrange. However, 
their plots of the compensated spectra (done in the same way as our figure 9a) show 
a slight increase with wavenumber. They attribute this to the so-called spectral bump 
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(near the dissipation range). We suggest that the scaling exponent has not quite 
reached 5 / 3 .  We have calculated C1, from their data (by replotting their spectra in 
the manner of our figure 9b). Its value is plotted in figure 12 and is consistent with 
the trend in our own data. 

It appears, then, that an RA of approximately lo4 is required before the prediction 
of K41 is properly fulfilled in terms of the spectrum (equation (1)). Presumably, the 
value of R; must be significantly greater than this before the Kolmogorov (1962) 
intermittency correction (which steepens the slope even further) will be observable. 
We note that an Ri of lo5 in air implies (assuming an r.m.s. velocity of 1 m s-l) 

an integral length scale of 10 km! However, we believe that insight into the value 
of intermittency will be gained from controlled experiments at R?. - 1000. We are 
currently building a large active grid to achieve this. 

While the comparatively wide Reynolds number range of this study has been 
facilitated by new developments in grid design, it is curious that there appear to 
be no systematic studies of the variation of the turbulence spectrum with Ri. for 
other flows such as jets and boundary layers. These are flows for which a wide 
range of Reynolds numbers can be achieved with existing technology. It could be 
anticipated that the evolution of the spectrum for these flows will be different to 
that described here. For instance, in oscillating grid turbulence (a flow in which 
a conventional grid oscillates in a quiescent fluid) the 5/3 slope tends to occur at 
low Ri, and as soon as a scaling region is observed. This is possibly because the 
turbulence undergoes more straining by the time it reaches the measuring point (Hunt 
& Vassilicos 1991). Similarly, for a passive scalar in conventional grid turbulence, a 
scaling region occurs earlier than for the velocity field (Jayesh et al. 1994). The nature 
of turbulence statistics appears to be sensitive to their mode of generation even to 
quite high-Reynolds-numbers. It still remains to be seen whether true universality is 
ever achieved between flows of different origin, although the results presented here 
show at least for second-order moments there appears to be a consistency between 
grid turbulence and shear flows at high R;.. 

Our results have implications for the modelling of turbulence at moderate Reynolds 
numbers and are therefore of practical importance. We have shown that even by 
R;. - 500,C1, is 0.7, a value significantly different from the asymptotic value of 0.5. 
A value of R, = 500 is relatively high in terms of industrial fluid mechanics. For 
example, the Ri of turbulence in a commercial combustor is of this order. Large- 
eddy simulations usually model the inertial subrange assuming that its behaviour is 
independent of R;. We suggest that errors will accrue unless the Reynolds number 
dependence is accounted for in these and other modelling procedures. 

6. Conclusions 
Using the active grid design of Makita (1991) we have explored the evolution of 

grid turbulence with Reynolds number. We have shown that as Ri is varied from 
50 to nearly 500 there is a qualitative change in the nature of the turbulence. For 
R;, < 100 it has a weak scaling range (none at all below Rj, - 50) and there is little 
or no effect of the intermittency on the inertial range. Nevertheless here, as for high 
R;.,e - ( u ' ) ~ / ' / /  implying a fully developed cascade in which the dissipation can be 
inferred from large-scale quantities. We call this weak turbulence. Above Ri - 200 
the scaling region is well developed with an exponent close to 5 / 3 .  Here the internal 
intermittency is reflected in the inertial subrange. We call this strong turbulence and 
have shown that it has similar characteristics to the high-Reynolds-number turbulence 
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studied in shear flows and in the atmosphere. We find that the change from weak to 
strong turbulence occurs in the range 100 < R), < 200. Here there is rapid change 
in the value of the scaling exponent as well as in the conditional and other statistics 
(figures 10, 24, 26 and 28). 

Our experiment appears to be the first to bridge the gap between the low-Reynolds- 
number (Rl - 50) laboratory studies of grid-generated turbulence which have pro- 
vided so much insight into its kinematics and dynamics (Batchelor 1953; Comte-Bellot 
& Corrsin 1971) and the high-Reynolds-number experiments (R). - lo3) done in the 
atmosphere and the oceans that have provided broad confirmation of K41 as well as 
estimates of the scaling and intermittency exponents, and the Kolmogorov constant 
(see Champagne 1978; and Nelkin 1994 for references to more recent experiments). 
We note that many turbulent flows of practical importance, such as in industrial 
mixers or machines, occur at the intermediate Reynolds numbers studied here. 

Our results suggests that much can be learned about the behaviour of turbulence 
at high-Reynolds-numbers using a small wind tunnel. We note that the insights 
gathered from the atmospheric experiments as well as from the canonical experiments 
of Saddoughi & Veeravalli (1994) are costly and varying flow conditions is difficult. 
(Indeed control is impossible in the atmosphere.) Nevertheless, the RE. of 500 achieved 
in the present experiment is still too low to explore the detailed structure of high- 
Rl turbulence. We have shown that at this Rl there is still a significant evolution 
in the value of C1, and Cz* (figure 12), the scaling exponent is still less than the 
Kolmogorov value of 5/3 (figure 10) and p, the intermittency exponent, is still less 
than the observed high-Ra value of 0.2 (figure 30). We are presently constructing a 
larger Makita style grid with the aim of achieving an Ri of around 1000, to study 
statistics higher than those of second order, to which we have confined ourselves 
here. 

We once again thank Mr E. P. Jordan who expertly constructed the grid. Dr Chen- 
ning Tong carried out some preliminary experiments and Professors S. B. Pope and 
E. D. Siggia provided advice as well as encouragement. We sincerely thank them. The 
work was supported by the Department of Energy (Basic Energy Sciences) whom we 
also thank. 

Note added in proof: Recently we have constructed a larger version of the active 
grid, obtaining an Rj, of 800. The new results are entirely consistent with the trends 
reported here; for example, the slope of the u spectrum is 1.6, at Ra - 800 and this is 
consistent with the trend in figure 10(a). These, and results of passive scalar mixing 
experiments in the same flow, are presently being prepared for publication. 
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